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Rapid flips betweenwarm and cold extremes
in a warming world

Sijia Wu1,16, Ming Luo 1,16 , Gabriel Ngar-Cheung Lau2, Wei Zhang 3,
Lin Wang 4, Zhen Liu5, Lijie Lin6, Yijing Wang7, Erjia Ge8, Jianfeng Li9,
Yuanchao Fan 10, Yimin Chen1, Weilin Liao 1, Xiaoyu Wang1, Xiaocong Xu 1,
Zhixin Qi1, Ziwei Huang1, Faith Ka Shun Chan 11, David Yongqin Chen12,
Xiaoping Liu 1 & Tao Pei 13,14,15

Rapid temperature flips are sudden shifts from extreme warm to cold or vice
versa–both challenge humans and ecosystems by leaving a very short time to
mitigate two contrasting extremes, but are yet to be understood. Here, we
provide a global assessment of rapid temperature flips from 1961 to 2100.
Warm-to-coldflips favorably followwetter and cloudier conditions, while cold-
to-warm flips exhibit an opposite feature. Of the global areas defined by the
Intergovernmental Panel onClimateChange, over 60%have experiencedmore
frequent, intense, and rapid flips since 1961, and this trendwill expand tomost
areas in the future. During 2071–2100 under SSP5-8.5, we detect increases of
6.73–8.03% in flip frequency (relative to 1961–1990), 7.16–7.32% increases in
intensity, and 2.47–3.24% decreases in transition duration. Global population
exposure will increase over onefold, which is exacerbated in low-income
countries (4.08–6.49 times above theglobal average).Ourfindingsunderscore
the urgency to understand and mitigate the accelerating hazard flips under
global warming.

In a warming world, extreme warm (and cold in some cases) events
would intensify and pose increasing threats to natural and socio-
economic systems1–6. Compared with independent extreme warm or
cold events, rapid temperature flips–a sudden shift in temperature
from extreme warm to opposite extreme cold or vice versa–allow a

very short time for human and ecosystem preparedness to respond
and adapt. Thus, this natural hazard can increase the risk of severe and
even irreversible impacts on human health7, infrastructure8, air
quality9, and plant phenology10, etc. Although there is a rapidly grow-
ing literature on independent extreme warm (such as heatwaves) or
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cold events (such as cold spells)1–6, very little is known about the rapid
flips between warm and cold events, including historical occurrences,
underlying processes, and their responses to global warming. This
knowledge gap is of considerable concern given the high vulnerability
of human, animal, and plant health to sudden flips in temperature
extremes under climate change.

Rapid temperature flips have occurred worldwide and have
caused disruptive impacts on humans and the environment7–10.
Notable examples of warm-to-cold flips include a March 2012 event
in North America, which experienced a temperature drop from ~10 °C
above the normal to 5 °C below the normal in less than a week,
leading to premature crop blossoming in ‘false spring’ and sub-
sequent damage by an anomalous cold spell11,12. In September 2020,
the Rocky Mountains in North America faced a sudden transition
from a severe heatwave to a heavy blanket of snow with a drop of
>20 °C within a day, leading to power outages, property damage, and
disrupted daily life13,14. Outside North America, Europe experienced a
significant flip in April 2021, when temperatures swung fromwarm to
cold conditions, leading to widespread frost damage to crops15.
These high-impact disaster incidents underline the urgent need to
establish a comprehensive understanding of the rapid flips between
two contrasting hazards, which remain poorly understood.

Here, we investigate the changes in temperature flip events as
the climate warms using multiple observations and a suite of climate
simulations in the Coupled Model Inter-comparison Project phase 6
(CMIP6, see Methods). We present their global patterns and possible
associated processes in observations during 1961–2023. We then
estimate the long-term trends in their occurrence frequency, inten-
sity, and transition duration since 1961, and project the future
changes until the end of the twenty-first century under different
Shared Socioeconomic Pathways (SSPs). We show how these trends
vary over different Intergovernmental Panel on Climate Change Sixth
Assessment Report (IPCC AR6) climate reference regions16. To
explore the impact of temperature flips, we also estimate how
population exposure to temperature flip changes varies across dif-
ferent countries and income levels. The results advance our knowl-
edge of understanding sudden and intense weather shifts and
highlight the imperative of assessing the full risks of extreme events
in a warming world.

Results
Global patterns of rapid temperature flip occurrences
We start with examining the global patterns of the occurrence fre-
quency, intensity, and transition duration of warm-to-cold and cold-
to-warm flip events displayed in Fig. 1. A warm-to-cold flip is identi-
fied when temperature shifts from one standard deviation (s.d.)
above to below themean temperature within five days, and vice versa
for a cold-to-warm flip (Fig. 1a, b and see Methods for details). Using
different temporal intervals (3, 5, and 7 days; compare Fig. 1c–h and
Supplementary Figs. 1–2) and temperature thresholds (1.0, 1.5, and
2.0 s.d.; compare Fig. 1c–h and Supplementary Figs. 3–5) to define
rapid flips yields similar results, demonstrating the robustness of our
findings. Different datasets (i.e., ERA517, Berkeley Earth18, and NCEP19)
yield consistent latitudinal and seasonal patterns in the occurrence
characteristics of temperature flips (Fig. 1c–h). While temperature
flips tend to occur less frequently in lower latitudes (30°S–30°N) and
polar regions, they occur much more frequently in mid-latitudes
(around 30°S–60°S and 30°N–60°N), such as East Asia, eastern North
America, and southern parts of South America, Africa, and Australia
(Fig. 1c, d). This is expected since stronger synoptic variations inmid-
latitudes are associated with eddy activities and frontal systems,
which occasionally bring cold air masses from high latitudes and
warm air masses from low latitudes20, thereby causing more frequent
abrupt temperature changes in these regions. Rossby waves also play
an important role in the temperature variabilities over mid-

latitudes21. The areas with more frequent flip events tend to have
relatively stronger intensity, which is especially evident in East Asia
and South America (Fig. 1e, f). Different from the occurrence fre-
quency and intensity, the transition duration of the flip events is
shorter in the mid-latitudes of both hemispheres, indicating a more
rapid warm-to-cold or cold-to-warm shift in these regions (Fig. 1g, h).
Among different seasons, warm-to-cold flips are generally more fre-
quent andmore intense in the March-April-May (MAM) and June-July-
August (JJA) seasons, with the shortest transition duration observed
in JJA. During the December-January-February (DJF) season, these
warm-to-cold flips exhibit a lower frequency and smaller intensity
but have a longer transition duration. For cold-to-warm flips, there
are fewer seasonal differences, although they tend to have a lower
frequency in DJF.

Processes of rapid temperature flip occurrences
To showhowwarm-to-cold and cold-to-warmflip events occur,wefirst
reveal the local physical processes underlying their occurrences
(Fig. 2). Specifically, we compare the composite anomalies of relevant
variables between flip and non-flip events (i.e., either warm or cold
events that do not flip to the opposite extremes) for each grid cell
(Supplementary Fig. 6), and then examine the evolution of the com-
posite anomalies of these variables during temperature flip events
(Supplementary Fig. 7). In comparison to non-flip warm events, the
warm events that flip to cold are featured with weaker increases in
temperature, slighter decreases in relative humidity, and larger
increases in cloud cover (Supplementary Fig. 6). Increased clouds lead
to weaker net solar radiation reaching the surface, thus providing a
beneficial environment for cooling in the coming days. Under a con-
tinuously cloudy and humid sky, this cooling during the transition of
warm-to-cold flips is also associated with stronger increases in soil
moisture (Supplementary Fig. 7). This increase is likely result of
reduced evapotranspiration due to persistent cloud cover and high
humidity during the warm phase of the warm-to-cold flip event22.
These changes collectively reduce surface temperatures, contributing
to a rapid flip from anomalously warm to cold conditions. During the
cold state of the cold-to-warm flip events, the changes in these vari-
ables exhibit approximately opposite patterns to those for warm-to-
cold flips (Supplementary Figs. 6–7). Compared with non-flip cold
events, the cold events that flip to warm typically exhibit weaker
decreases in temperature and decreased relative humidity and cloud
cover, which allow more solar radiation to reach the surface. Under a
clearer and drier sky, reductions in atmospheric humidity and soil
moisture weaken evaporative cooling via land-atmosphere
interactions23. While the impact of soil moisture is less pronounced
during winter (Supplementary Figs. 8–11), it still plays a role in influ-
encing temperature flips in regions where soil moisture remains
unfrozen. Additionally, reduced cloud cover allows more solar radia-
tion to reach the surface during the day, collectively facilitating the
transition from cold to warm conditions. A conceptual diagram sum-
marizing the local physical processes associated with typical tem-
perature flips is shown in Fig. 2.

Further, we explore large-scale atmospheric circulation affecting
temperature flip events by taking easternNorth America (there are 168
warm-to-cold and 157 cold-to-warmflip events in 1961–2023), northern
China, central South America, and southeastern Australia as examples
(Supplementary Figs. 12–15). These regions are among those where
both warm-to-cold and cold-to-warm flips occur most frequently
(Fig. 1c–h). The evolution of temperature flip events in these regions is
primarily under the control of a wave-like train pattern with low- and
high-pressure centers alternatively appearing in mid-latitudes. For
example, before the occurrence of warm-to-cold flip in eastern North
America (Supplementary Fig. 12), this region is dominated by anom-
alous high pressure and anticyclones, allowing warm conditions to
persist. The high pressure over eastern North America coincides with
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low-pressure anomalies over western United States and western
Atlantic, showing a zonal wave-like pattern. This wave pattern moves
eastward and intensifies. Later, during the transition period, the low-
pressure center dominates eastern North America and produces cold
advection, thereby triggering a warm-to-cold flip event there. In
comparison, cold-to-warm flips in eastern North America are

characterized by opposite atmospheric circulation configurations to
warm-to-cold flips. For both flip types in this region, the associated
circulation configurations exhibit a generally consistent sign across
different seasons (Supplementary Figs. 16–17). Similar patterns are
observed in northernChina (Supplementary Fig. 13 and ref. 24), central
South America (Supplementary Fig. 14), and southeastern Australia
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Fig. 1 | Detection and observed climatology of temperature flips. a,b An
example of detecting rapidflips between anomalouslywarmand anomalously cold
events. aDetection of warm and cold events basedon standardized and detrended
temperature series. The black (gray) line indicates the standardized and detrended
(raw) 5-day rolling mean temperature series, the red line indicates the multi-year
season-varying climatological mean of temperature, the gray shading denotes the
mean temperature±standard deviation (s.d.), the red (blue) dashed line shows +1
(–1) s.d., the red (blue) shading indicates that the temperature is greater (smaller)
than the mean by 1 s.d., the red (blue) circle shows the identification of the
anomalously warm (cold) event, and the red (blue) diamond marks the identifi-
cation of the cold-to-warm (warm-to-cold) flip event. b An example of detecting a
cold-to-warm flip event and its intensity and transition duration analyzed in this
study. Blue, gray, and pink colors, respectively, indicate the cold phase, transition
phase, and warm phase of a cold-to-warm flip event. c–h Maps showing the

climatological mean of annual mean occurrence frequency (c, d), intensity (e, f),
and transition duration (g, h) of the warm-to-cold (left panel) and cold-to-warm
flips (right panel) over 1961–2023. Temperature flip events are first identified from
each dataset of ERA5, Berkeley Earth, and NCEP, and then the annual metrics of
temperature flips from three datasets are averaged to give an ensemblemean. The
embedded bar chart shows the climatology of the corresponding characteristics
based on the ERA5 (cyan bar), Berkeley Earth (blue bar), and NCEP (gray bar)
datasets in different seasons (DJF: December-January-February,MAM:March-April-
May, JJA: June-July-August, SON: September-October-November). The latitudinal
curves accompanying the maps show the zonal means of the climatology of the
corresponding characteristics basedon theERA5 (cyancurve), Berkeley Earth (blue
curve), and NCEP (gray curve) datasets, and the shading indicates the spread of
zonal mean values (mean ± s.d.).
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(Supplementary Fig. 15), suggesting that such wave-like train patterns
play a consistently crucial role in temperature flips across these
regions. Considering that temperature flips in other regions may be
affectedby different atmospheric circulation systems, further analyzes
of the large-scale circulation influencing specific regions may still be
required.

Historical changes of rapid temperature flips
During 1961–2023 (Fig. 3), the global mean occurrence frequency and
intensity of warm-to-cold and cold-to-warm flip events have significant
increasing trends (p values < 0.05), while their transition duration has
been decreasing (−0. 11 and −0.08 days per century, p values < 0.05).
These trends suggest that the two types of temperature flips have
already become more frequent, more intense, and more rapid. Of the
global areas defined by IPCC AR6, over 60% have experienced
increasing, intensifying, and accelerating flip events since 1961. An
extended examination based on the NOAA-CIRES-DOE 20th Century
Reanalysis Version 3 dataset25 implies that these intensifications of
temperature flips have occurred as early as the early 20th century, and
may have accelerated since the late 20th century (Supplementary
Figs. 18–19).

The global acceleration of warm-to-cold (cold-to-warm) flips over
the past six decades is associated with regional transition duration
decreases over 78% (65%) of the IPCC AR6 regions, notably for the
significant decreases (p-values < 0.1) over the tropics and subtropics
such as South America, West Europe, Africa, and South and Southeast
Asia (Fig. 3e, f), which typically have stronger increases in the occur-
rence frequency and intensity for both types of flips (Fig. 3a–d). This
result is generally consistent with earlier findings, which reported
significant increases in temperature variability over the tropics26. The
increased tropical temperature flips are likely related to soil drying27,
enhanced atmosphere variability28, and tropical deforestation29, which
can decrease the surface roughness, thus elevating near-surface wind,
enhancing the advection of warm or cold air masses, and facilitating
more intense temperature variability30. Densely populated regions
(notably in South and Southeast Asia) have become increasingly
exposed tomore volatile temperatures, reinforcing the urgent need to
mitigate the impacts of sudden and intenseflips. There are also regions
with decreasing frequency of temperature flips, mainly in polar and
cold zones (such as parts of the Arctic and northwestern North
America). This is likely connected to a reduced meridional tempera-
ture gradient andmelting sea ice due to the Arctic amplification under
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global warming28,31. As the temperature gradient weakens, the differ-
ences in temperature of incoming air masses between the north and
the south are expected to decrease, causing smaller local temperature
variability28,32.

Projected future changes of rapid temperature flips
We now investigate future temperature flip changes projected by
CMIP6 models, which can reproduce flip events both in historical
climatology (compare Supplementary Fig. 20 and Fig. 1c–h) and
trend patterns (compare Supplementary Figs. 21–23 and Fig. 3). The
projected increases in the frequency and intensity of temperature
flips, alongside decreases in their transition duration, tend to con-
tinue by the end of the twenty-first century (Fig. 4). Under a high
emission scenario (SSP5-8.5) during the far future period
(2071–2100), the multi-model ensemble mean projects that global
mean frequency (Fig. 4a, b) of warm-to-cold events will increase by
8.03% ± 5.15% (“±” denotes the uncertainty of the ensemble mean
measured by half of the inter-model standard deviation, following
refs. 33,34), and cold-to-warm flips by 6.73% ± 6.44%, relative to his-
torical simulations over the baseline period (1961–1990). The inten-
sity is expected to rise by 7.32% ± 1.47% and 7.16% ± 1.72% for warm-
to-cold and cold-to-warm flips, respectively (Fig. 4c, d). Additionally,
the transition duration of these events is anticipated to be shortened
by 3.24% ± 0.55% and 2.47% ± 0.68%, respectively (Fig. 4e, f). Under
SSP5-8.5 from 2023 to 2100, future projections show significant

shortening trends (p value < 0.1) in the transition duration of tem-
perature flips over nearly all IPCC AR6 regions (95.65% and 89.13% for
warm-to-cold and cold-to-warm flips, respectively; see Fig. 4g, h),
with dramatic increases in the occurrence frequency and intensity
(Supplementary Fig. 24). Some tropical regions with relatively higher
vulnerability and poorer resilience such as Latin American countries
are expected to experience even more severe threats from intensi-
fying temperature flips, while there are someweakening temperature
flips in high latitudes which may offset the estimated global mean.
Our projections of increasing temperature flip risks under SSP5-8.5
may be conservative, as reported by refs. 35–37 that CMIP6 models
may underestimate the magnitude of changes in temperature vari-
abilities. In contrast to SSP5-8.5, the increases in frequency and
intensity, and decreases in the transition duration of temperature
flips under moderate or low scenarios (SSP2-4.5 and SSP1-2.6) would
be substantially reduced in most areas (Fig. 4i, j and Supplementary
Fig. 24). This signifies a substantial difference in the risk of future
temperature flips contingent on our efforts to reduce carbon
emissions.

Increasing, intensifying, and accelerating temperature flips
under climate warming may be facilitated by long-term changes in
both large-scale atmospheric circulations and local land-atmosphere
interactions. For example, the occurrences of extreme warm and
cold events, and their flips as shown in our above analyzes, have been
linked to the amplitude and phase of the Rossby waves and jet
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Fig. 3 | Observedhistorical changes of temperatureflips. a–fObservedhistorical
trends in the regionalmean of the occurrence frequency (a, b), intensity (c, d), and
transition duration (e, f) of warm-to-cold (left panel) and cold-to-warm flips (right
panel) during 1961–2023 based on ensemble mean of the results from the ERA5,
Berkeley Earth, and NCEP datasets. The occurrence frequency, intensity, and
transition duration of temperature flips are identified at each grid cell and then
averaged over the IPCC AR6 regions with consideration of the weights of grid cell
areas. Hatching indicates a significant trend with p value < 0.1 based on a modified

non-parametric Mann–Kendall test. The embedded line plot shows the time series
of spatially averaged annual mean of occurrence frequency (a, b), intensity (c, d),
and transition duration (e, f) of the warm-to-cold (left panel) and cold-to-warm
(right panel) flips over global land areas during 1961–2023. The straight line indi-
cates the corresponding linear trend, and the shading indicates the corresponding
90% confidence interval. Slope and p value estimates for the trend per century are
given in parentheses.
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streams38,39. In response to global warming, the Rossby wave ampli-
tudes have been projected to intensify, and the jet streams will
become wavier40, which can intensify temperature variability and
potentially facilitate the rapid flips between cold andwarm events. By
taking eastern North America as an example, here we compare the

circulation changes associated with temperature flips between the
historical baseline period and the far future period (2071–2100)
under the SSP5-8.5 scenario (Supplementary Figs. 25–27). The com-
parison indicates that the large-scale circulation patterns associated
with temperature flips in eastern North America in the future are
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Fig. 4 | Projected future changesof temperature flips. a–f Time series of spatially
averaged occurrence frequency (a, b), intensity (c, d), and transition duration (e, f)
of warm-to-cold flip (a, c, e) and cold-to-warm flip (b, d, f) events over global land
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seasons in the historical simulations (ALL) during the baseline period (1961–1990)
and in the future scenarios during the far future period (2071–2100). The size of the
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8.5 scenarios. g, h Projected future trends in the regional mean of transition
durationofwarm-to-cold (g) and cold-to-warm (h)flips during 2023–2100basedon
CMIP6 model ensemble mean simulations under SSP5-8.5 scenario. The transition
duration of temperature flips is identified at each grid cell and then averaged over
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under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios.
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similar to those in the historical period, suggesting that atmospheric
circulation dynamically drives the occurrence of temperature flips in
eastern North America. Notably, the positive and negative circulation
anomalies are much stronger in the future projections, implying a
potentially greater intensity and wider impact of temperature flips.
These projected changes in atmospheric circulation patterns, as
evidenced by our analyzes in eastern North America, support the
physical plausibility of increased temperature flip events under
future warming scenarios. Moreover, local land-atmosphere inter-
actions such as changes in soil moisture, snowpack, and vegetation
cover may contribute to intensifying temperature flips by modulat-
ingmass and energy fluxes to the atmosphere30,41,42. Climate warming
is expected to exacerbate soil moisture deficit in some areas43,44,
which can intensify temperature variability via increasing the effects
of surface heat fluxes27,38. As the climate warms, diminishing snow
may also cause stronger variations of atmospheric diabatic
heating45,46, thereby favoring rapid temperature changes. Besides,
extensive deforestation not only increases greenhouse gas con-
centrations but also decreases the surface roughness thus elevating
near-surface wind47,48, which can enhance the advection of warm or
cold air masses, thus facilitating rapid temperature changes and
increasing the likelihood of temperature flips.

Escalating threats of rapid temperature flips
Due to limited time to adapt to rapid temperature shifts, rapid warm-
to-cold and cold-to-warm flip events are likely to amplify the negative
consequences of independent warm and cold events on societal and
natural systems. Projected changes in exposure to future temperature
flips are a key component of understanding their potential vulner-
ability and, therefore, critical to adequate planning and mitigation.
Here we provide projections of population exposure to temperature
flips under different scenarios (Fig. 5; see Methods for details). During
2000, the annual global average population exposure to temperature
flips was 15.98 billion person-events. By the end of the twenty-first
century (2071–2100), the exposure is expected to increase to 34.67
(24.37) billion person-events under SSP3-7.0 (SSP5-8.5), representing a
116.92%± 14.58% (52.90% ± 10.22%) increase relative to the historical
period (Fig. 5a, b). However, the increase in exposure will be limited to
21.94% ± 5.58% under SSP1-2.6, suggesting that the mitigation pathway
of SSP1-2.6 is helpful in ameliorating the increase in temperature flips
and their impacts.

There are notable disparities in projected population exposure
across different countries and income levels (Fig. 5b, c). Specifically,
low-income countries are expected to experience the greatest increase
in exposure (4.08–6.49 times above the global average), followed by
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lower-middle-income countries (0.85–1.29 times above the global
average) under all scenarios. Except for high-income countries, poorer
countries will experience the largest increases in population exposure
under SSP3-7.0, especially for low-income (SSA-L: 590.39% ± 66.34%)
and mid-income sub-Saharan Africa (SSA-M: 505.69% ± 89.74%), and
low-income Latin American countries (LAM-L: 387.96% ± 78.09%). In
comparison, the changes in population exposure in most high-income
countries under SSP3-7.0 are smaller than the global level, except for
Saudi Arabia and high-income Middle Eastern countries (MEA-H:
412.24% ± 23.37%, i.e., 3.53 times above the global average).

The comparison between different income levels shows uneven
population exposure to the intensification and acceleration of tem-
perature flip risks across developing and developed countries in a
warming climate. Developing countries with large populations, espe-
cially those in low-income countries, are particularly vulnerable to
higher exposure increases, which raises substantial concerns for
human health and the human-managed environment. These countries
typicallywith relatively poor infrastructure and resilience, therebymay
not have sufficient resources and preparedness to mitigate escalating
threats of rapid temperature flips49. Compared with other hazards,
rapid temperature flips, by leaving a very short time to respond and
adapt, may amplify the resultant impacts on natural and societal sys-
tems. If adaptive capacity in these countries does not keep pace with
the intensifying abrupt flips betweenwarm and cold conditions, it may
exert heavier stress on the human body and even elevate the risks of
morbidity and mortality, especially for vulnerable groups such as the
elderly and those with pre-existing health conditions50,51. This is parti-
cularly severe in low-incomeor high-poverty regions such asAfrica and
South Asia, where ecosystems and societies are more susceptible to
intense and rapid temperature flips (Fig. 5c)28.

Climate change leads to more frequent and more severe tem-
perature flips, such as warm winter days followed by sudden cold
snaps can cause unpredictable energy demands for heating, thereby
increasing unevenly across different income-level regions and elevat-
ing the risks of energy shortages in some low-income regions52. These
issues would be exacerbated if no effective measures were taken to
tackle the escalating threats of temperature flips. This is particularly
severe for low-income regions, which usually have vulnerable infra-
structures of insufficient adaptivity and resilience to mitigate
increasing threats from temperature flips. We notice that rapid flips
from warm to cooler conditions in some regions can alleviate heat
stress, thereby mitigating some of the negative impacts associated
with prolonged heat waves. However, our study emphasizes the
potential risks of abrupt and sudden temperature flips (that is, from
extreme warm to extreme cold conditions) rather than general tem-
perature changes. While there may be scenarios where a cooler phase
could be beneficial, the emphasis on the rapid transition highlights the
danger of not being able to adapt quickly enough to the shifting
conditions. For instance, empirical evidence shows that sudden tem-
perature drops in neighboring days are potential modifiable risk fac-
tors of asthma exacerbation, especially for patients with higher body
mass index53. Rapid and intense temperature drops can also cause
strain on energy systems due to sudden heating demands, and chal-
lenges in agricultural crops that may be damaged by unexpected
frost11,54.

Implications for climate change mitigation
The responses of societal and natural systems to accelerating tem-
perature flips can be variable, which raises new challenges for forecast
and prediction. Accurate forecasts of rapid temperature flips require
further investigations into location-specific driving factors, underlying
mechanisms, and synoptic circulation changes. For seasonal to annual
scale of prediction, large-scale signals such as the El Niño-Southern
Oscillation55, North Atlantic Oscillation56, and Madden-Julian
Oscillation57 may provide sources of predictability. At a longer time

scale, in addition to anthropogenic global climate warming, local
urbanization and its associated land use and land cover changes may
contribute to long-term trends of temperature variability and flips58,59,
and thus can also be considered as a predictor. Early warning and
accurate prediction of temperature flips can be highly beneficial for
mitigating their impacts and managing their risks. Our research
underscores the urgent need for constraining emissions to alleviate
the intensification of these rapid temperatureflips and thus tomitigate
their resultant impacts. Moreover, our reported increases in the pro-
jected risks of increasing, intensifying, and accelerating temperature
flips in the future suggest that such events would be unprecedented in
the current modern era of mitigating infrastructure and call for a
pressing need to construct and fortify effective infrastructure to adapt
the communities to sudden hazard flips.

Methods
Observations and reanalysis
Our study utilizes daily mean temperature at 2m height above the
surface over the historical period (1961–2023) from three different
global datasets, they are, the fifth-generation product produced by
the European Centre for Medium-range Weather Forecasts (ECMWF)
global reanalysis (ERA5)17, the Berkeley Earth temperature dataset18,
and the National Centers for Environmental Prediction (NCEP)-
National Center for Atmospheric Research (NCAR) reanalysis19. Daily
temperatures from the ERA5, Berkeley Earth, and NCEP datasets are
regridded into a resolution of 2.5 ° × 2.5 ° using bilinear interpolation
for comparison. Three different datasets yield highly consistent cli-
matological patterns in terms of both spatial (e.g., latitudinal) and
temporal (e.g., seasonal) variations in temperature flip events (Fig. 1
and Supplementary Figs. 1–2). We also identify temperature flips
from the GHCN-daily gridded dataset (known as HadGHCND60) and
find that their climatological patterns and long-term trends are
generally consistent with those from the above-mentioned three
datasets (compare Supplementary Figs. 28–29 and Fig. 1c–h). Con-
sidering that HadGHCND has limited spatial coverage with large
number of missing values in tropical regions and the Southern
Hemisphere, we thereby present an ensemble analysis by averaging
the results from three global full-coverage datasets, i.e., ERA5, Ber-
keley Earth, and NCEP datasets.

Model simulations
In addition, the projected changes in the characteristics of tem-
perature flips during 1961–2100 are examined using daily tempera-
ture outputs from the simulations of 17 climate models participating
in the Scenario Model Intercomparison Project (ScenarioMIP) within
the Coupled Model Intercomparison Project Phase 6 (CMIP6, see
Supplementary Table 1 for details) project61. The temperature output
over 1961–2014 utilizes the historical simulations, whereas the
2015–2100 period uses the future climate projection under various
emission and socioeconomic scenarios represented by four Tier 1
experiments based on SSP-RCP scenarios, which are SSP1-2.6 (sus-
tainability), SSP2-4.5 (middle of the road), SSP3-7.0 (regional rivalry),
SSP5-8.5 (fossil-fueled development)62. For each model simulation,
one realization is used in each experiment, as suggested by previous
studies63. Daily temperatures in all climate model simulations are
interpolated into a horizontal resolution of 2.5 ° × 2.5 ° by bilinear
interpolation to match the observational data. For both historical
simulation and future climate projections involving multiple models,
we first calculate the metrics of the flip events separately for each
model and then average these metrics of all participating models
to yield a multi-model ensemble mean, with the uncertainty mea-
sured by half of the inter-model standard deviation33,34. This
approach effectively mitigates the uncertainties from inter-model
differences as it has been shown to outperform a single model in
simulating64–66.
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We evaluate historical climatological occurrences of rapid
temperature flips in CMIP6 model simulations (Supplementary
Fig. 20). The evaluation suggests that the climatological patterns
in model simulations exhibit a high consistency with those in
observations and reanalysis (compare Fig. 1c–h and Supplemen-
tary Fig. S20), with some inter-model spread comparable to the
spread between multiple observations/reanalysis. Also, the eva-
luation of historical trends in temperature flip occurrences shows
that CMIP6 models can reproduce historical trend patterns with
increasing frequency, increasing intensity, and decreasing dura-
tion over most IPCC AR6 climate reference regions (Supplemen-
tary Figs. 21–23). These evaluations demonstrate a strong
robustness of simulating temperature flips by CMIP6 models. The
uncertainty of the multi-model ensemble mean is represented by
half of the standard deviation67.

Identification of rapid temperature flips
A temperature flip event is defined as a short period in which tem-
perature suddenly shifts from extreme warm to extreme cold (warm-
to-cold flip) or from cold to warm (cold-to-warm flip) (Fig. 1a, b). The
flip events are identified separately for each grid cell. In particular,
extreme warm (cold) events at a grid cell are first identified when the
five-day mean temperature is greater (smaller) than the climatological
average by one standard deviation (s.d.) of the data series. Then, a
warm-to-coldflip is detected if an extremewarm event is followed by a
cold event within five days, and vice versa for a cold-to-warm flip. We
also use three and seven days to define the time period and find that
different intervals yield similar results (Supplementary Figs. S1–S2).
Similarly, using different thresholds (1.0 s.d., 1.5 s.d., and 2.0 s.d.) to
define extreme events also yields robust results (Supplementary
Figs. S3–S5).

To exclude the effects of long-term climate warming on the
detection of temperature flip events, we first detrend the original
daily temperature time series using a third-degree polynomial fitting
method. This detrending process is applied to a 31-day rolling win-
dow for each grid cell to separate the inter-seasonal variability, that
is, the season-dependent climatological average of temperature
can be separated. Based on the detrended temperature data, we
calculate the standard deviation (s.d.), which mainly reflects the
natural variability of the climate without (or with a little) the influ-
ence of long-term trends68–70. Moreover, considering that the tem-
perature s.d. may also vary across different seasons, the season-
dependent s.d. on each calendar day is individually calculated by
applying a 31-day rolling window. The above processing and the
identification of the flip events are repetitively applied to all global
land grid cells.

In practice, for each grid cell, let T ið Þ be the detrended five-day
temperature centered on day i, T ið Þ

m be the multi-year (1961–2023) cli-
matological mean of the temperatures on the same calendar day that
day i is located in; and T ið Þ

s:d: be the corresponding standarddeviation. A
warm event occurs on day i if T ið Þ >T ið Þ

m +T ið Þ
s:d: and is marked as “+1”; a

cold event occurs onday i if T ið Þ < T ið Þ
m � T ið Þ

s:d: and ismarked as “–1”; and
other conditions are marked as “0”:

E ið Þ =

+ 1, T ið Þ >T ið Þ
m +T ið Þ

s:d:

�1,T ið Þ <T ið Þ
m � T ið Þ

s:d:

0, else

8
><

>:
ð1Þ

Using this screening, the temperature time series at each grid cell
is converted into a sequenceof “0”, “–1”, and “+1”. Awarm-to-coldflip is
then identified at the grid between day i and day j if

E ið Þ = + 1
� �

^ E jð Þ = � 1
� �

; j = min j0j E j0ð Þ = � 1, i < j0 < i+ τ
n o

ð2Þ

and a cold-to-warm flip event is identified if

E ið Þ = � 1
� �

^ E jð Þ = + 1
� �

; j = min j0j E j0ð Þ = + 1, i < j0 < i+ τ
n o

ð3Þ

where τ denotes the temporal interval (such as 5 days).
We examine the occurrence frequency, intensity, and transition

duration of temperature flips (Fig. 1a, b). The occurrence frequency at
a grid cell is defined as the total number of temperatureflip events that
occur at the same grid in a given period of time (e.g., a calendar year or
a season). For each warm-to-cold (cold-to-warm) event, the transition
duration is the time interval from the last day of the preceding warm
(cold) event to the first day of the following cold (warm) event. The
intensity of a warm-to-cold (cold-to-warm) event is defined as the
absolute value of the difference in the standardized temperature
between the warmest and coldest days of the flip event, and has a unit
of s.d. Here, we use the standardized temperature to exclude the
influences of regional discrepancies in the temperature variability,
which is usually measured by s.d.

Population exposure estimation
For a given year, population exposure to temperature flips is calcu-
lated by multiplying the population count in each grid by the number
of temperature flip events (the sum of cold-to-warm and warm-to-cold
flip occurrences) for each corresponding grid cell during the same year
with the following equation, and is thus expressed in the unit of
person-events71:

Expg, y =Pg, y × Eg, y ð4Þ

where Pg, y and Eg, y respectively denote the population count and the
number of temperature flip events at grid cell g in year y, and Expg, y

represents the population exposure in flips at the same grid cell g in
year y.

We then compare the disparities in population exposure to tem-
perature flips at regional levels, which include 30 different macro-
regions (Supplementary Fig. 30). The region definition is modified
from the regions used in the SSPs database (https://tntcat.iiasa.ac.at/
SspDb/dsd)72. These macro-regions can be divided into four income
levels (i.e., high-income, upper middle-income, lower middle-income,
and low-income)72. The population exposures in each macro and
income-level region are aggregated by exposures in temperature flips
from grid cells located in the corresponding region. Here, the gridded
population data are obtained from the SSPs database covering the
period from2000 to 2100at a 10-year interval, with a spatial resolution
of 1/8 ° 73,74. The historical population count is replaced by population
data from thebaseyearof 2000, and the futurepopulationprojections
are retrieved from the corresponding scenario. To match the tem-
perature flip events data, we aggregate the gridded population counts
to 2.5 ° × 2.5 ° spatial resolution.

Composite analysis
Thepossible processes associatedwith temperatureflips are examined
by the composite analysis method, and its statistical significance is
estimated based on a two-tailed Student’s t-test. The variables used
here include 2-m near-surface air temperature, total cloud cover,
relative humidity, soil moisture, surface shortwave and longwave
radiations, and surface latent and sensible heat fluxes. In the compo-
site analysis, we first obtain the daily anomalies of each variable by
removing the climatological seasonal cycle from the original daily
series. The seasonal cycle is obtained from themulti-year averaging on
individual calendar days over the baseline period of 1961–1990 and
then performing a 31-day rolling mean75,76.

To reveal the mechanisms underlying the temperature flips, we
conduct two composite analyzes. The first compares the atmospheric
conditions between flip and non-flip events, where non-flip events
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refer to either warm or cold events that do not flip to the opposite
extremes. We examine the composite anomalies of relevant atmo-
spheric variables on the last day of the warm (or cold) event for both
warm-to-cold (or cold-to-warm) flip and non-flip events. This com-
parison highlights the differences in pre-existing atmospheric condi-
tions that may influence whether a temperature flip occurs
(Supplementary Fig. 6). The second analysis focuses on the evolution
of atmospheric conditions during flip events by examining anomalies
throughout the transition phase of the flips, which is defined as the
period from the last day of the preceding warm (or cold) event to the
first day of the following cold (or warm) event. This analysis allows
identification of the key physical processes governing temperature
flips (Supplementary Fig. 7).

Trend estimation
Weutilize the simple linear regression to estimate the long-termtrends
of the occurrence frequency, intensity, and transition duration of
temperature flip events, and the significance of the trend is evaluated
by a modified non-parametric Mann–Kendall test77. The trend esti-
mation can be applied to the yearly metrics at individual grid cells and
to the area-weighted mean metrics of specific regions, such as IPCC
AR6 climate reference regions (Supplementary Table 2)16.

Data availability
All data used in this study are publicly available under the following
URLs. The ERA5 dataset is available via the Copernicus Climate Data
Store (CDS) at https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-complete?tab=form. The Berkeley Earth surface air
temperature dataset is available at https://berkeleyearth.org/data/.
The NCEP-NCAR reanalysis dataset is available at https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis.html. The GHCN-daily gridded
dataset (known as HadGHCND) is available at https://www.ncei.noaa.
gov/pub/data/ghcn/daily/grid/. The NOAA-CIRES-DOE 20th Century
Reanalysis Version 3 (20CRv3) dataset is available at https://www.psl.
noaa.gov/data/gridded/data.20thC_ReanV3.html. The outputs of daily
near-surface air temperature frommulti-model climate simulations are
from the CMIP6 portal at https://esgf-node.llnl.gov/projects/cmip6/.
The population projection grids based on shared socioeconomic
pathways (SSPs) are obtained from https://www.earthdata.nasa.gov/
data/catalog/sedac-ciesin-sedac-pd-sspbsyr-1-8th-1.01. The authors
acknowleage the World Meteorological Organization’s World Climate
Research Program (WCRP) CLIVAR program, the UK MetOffice HadEX
program, and the WMO Expert Team on Extreme Indices for their
inspiration to this work.

Code availability
The generated data of yearly metrics of rapid temperature flip events
and the codes used to identify rapid temperature flip events and cal-
culate the yearly metrics can be accessed at a Zenodo repository
(https://doi.org/10.5281/zenodo.15073788).
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